۱۳۸۷ اردیبهشت ۱۸, چهارشنبه

کمپروسور

کمپرسورهای پیستونی



bellows compressor - hermetic vacuum pumpكمپرسورهاي تناوبي (Reciprocating) كه رفت و برگشتي نيز ناميده مي‌شوند، يكي از قديمي‌ترين انواع كمپرسورها مي‌باشند. اولين نمونه‌هاي اين كمپرسورها با سيلندر چوبي (مثلاً از جنس بامبو Bamboo) ساخته شده و پيستون آن به وسيله نيروي انساني (دستي) عقب و جلو برده مي‌شد. آب بندي پيستون توسط پر پرندگان صورت مي‌گرفت تا از اين طريق در مرحله مكش هوا وارد كمپرسور شده و در مرحله تراكم از آن خارج شود. از اين كمپرسور غالباً براي ذوب فلزات استفاده مي‌گرديد. براساس شواهد تاريخي يونانيان در ۱۵۰ سال قبل از ميلاد مسيح توانستند كمپرسورهاي فلزي بسازند كه در آن از آلياژهاي برنزي استفاده شده بود. بهرحال در ساختار اين كمپرسورها تا قرن هيجدهم ميلادي پيشرفت چنداني صورت نگرفت تا اينكه يك مهندس انگليسي به نام" J.Wilkison" كمپرسوري را طراحي كرد كه شبيه كمپرسورهاي امروزي بوده و سيلندر آن از چدن ريخته‌گري ساخته و ماشين كاري شده بود.

كمپرسورهاي تناوبي عموماً براي دبي كم و فشار زياد مورد استفاده قرار مي‌گيرند. دبي گاز در اين نوع كمپرسورها از مقادير كم تا ۲۰۰۰ m3/hrمي‌رسد و با آن مي‌توان به فشارهاي زياد (تاbar ۶۰۰) دست يافت. در نسبت‌هاي تراكم بالاتر از ۵/۱ در هر مرحله اين كمپرسورها در مقايسه با ساير انواع كمپرسورها از راندمان بالاتري برخوردار مي‌باشند. كمپرسورهاي تناوبي اساساً جزء ماشين هاي با ظرفيت ثابت مي‌باشند ولي در شرايط خاصي مي‌‌توان ظرفيت آن را برحسب شرايط مورد نظر تغيير داد.

در كمپرسورهاي پيستوني با حركت پيستون به سمت عقب گاز به درون سيلندر وارد شده و فضاي درون سيلندر را پر مي‌كند. در حركت رو به جلو، با اعمال نيرو از سوي پيستون گاز حبس شده در سيلندر متراكم مي‌گردد. جهت سهولت در ورود و خروج گاز در سيلندر و ايجاد شرايط لازم براي تراكم آن در حركت روبه جلوي پيستون، اين كمپرسورها مجهز به سوپاپ‌هاي مكش و دهش مي‌باشند. جهت شناخت مقدماتي عملكرد كمپرسورهاي پيستوني مي‌توان تلمبه‌هاي باد دستي را مورد بررسي قرار داد، چرا كه اين تلمبه‌ها ضمن سادگي در رفتار داراي تمامي مشخصه‌هاي يك كمپرسور پيستوني مي‌باشند.

تلمبه‌ها شامل پيستون، سيلندر و سوپاپ هاي مكش و دهش بوده و نيروي محركه لازم براي تراكم هوا توسط نيروي انساني تأمين مي‌گردد. سوپاپ دهش اين كمپرسورها همان والو (Valve) لاستيك دو چرخه بوده كه مانع از نشت هوا از لاستيك ( قسمت دهش) به دورن تلمبه در هنگام حركت رو به عقب پيستون ( مرحله مكش) مي‌گردد. سوپاپ مكش اين تلمبه‌ها بر روي پيستون آن نصب گرديده است. اين قطعه به صورت فنجاني شكل (Cup _ Shaped) بوده كه از جنس چرم و يا مواد مشابه آن ساخته شده است.

در حالت مكش، در اثر حركت رو به عقب پيستون، هواي جلوي پيستون منبسط شده و درون سيلندر خلاء ايجاد مي‌شود. با توجه به اينكه هواي سمت بيروني پيستون تحت فشار آتمسفر قرار دارد، همين امر باعث جداشدن قطعه چرمي از كناره سيلندر گرديده و هوا مي‌تواند از اين طريق وارد سيلندر شده و آن را پرنمايد.

در حركت رو به جلوي پيستون، با كاهش حجم گاز، فشار گاز درون سيلندر افزايش يافته و نيروي حاصل از آن بر روي قطعه چرمي اثر نموده و باعث چسبيدن آن به كناره پيستون گرديده و موجب آب‌بندی پيستون شده و مانع از نشت گاز از كناره پيستون به خارج مي‌شود.

با تراكم گاز در سيلندر و افزايش فشار هواي حبس شده در آن، لحظه‌اي فرا مي‌رسد كه فشار درون سيلندر، از فشار درون تيوپ لاستيك بيشتر شده و باعث باز شدن سوپاپ لاستيك گرديده و هواي متراكم شده از درون سيلندر به داخل لاستيك فرستاده مي‌شود. بديهي است هرچه فشار درون لاستيك بيشتر باشد، سوپاپ آن ديرتر باز شده و انرژي بيشتري براي تراكم گاز و ارسال آن به داخل لاستيك مورد نياز مي‌باشد. به عبارت ديگر اگر مقاومتي در جلوي تلمبه نباشد و مستقيماً به آتمسفر متصل باشد، براي تخليه گاز از درون تلمبه به انرژي ناچيزي نياز خواهد بود.

کمپرسورهای اسکرو



در این کمپرسور ها دو روتور با پروفیل های متفاوت داخل یک اتاقک با جهت های متفاوت می چرخند .روتور اصلی ٨۵% تا ۹۰% انرژی دریافتی را به انرژی گرمایی و فشار تبدیل می کند. با چرخش مداوم روتورها هوای محبوس شده با کاهش حجم افزایش فشار می یابد . در تمام مراحل روغن وارد فضای بین پره ها می شود ( در نوع روانکاری با روغن ). این روغن وظیفه روان کاری و خنک کردن روتور ها را عهده دار است .

مرحله اول

هوا به داخل قسمت روتورها کشيده می شود وفضای بين پره ها را پر می کند اين قسمت مانند مرحله مکش در کمپرسور های پيستونی می باشد

مرحله دوم و سوم

هنگامی که هوا وارد قسمت فشرده سازی شد با چرخش روتورها حجم آن کم می شود و بنا بر این فشار افزایش می یابد. این کم شدن حجم تا قسمت تخلیه هوا ادامه می یابد تا فشار به مقدار دلخواه برسد

مرحله چهارم

هوای فشرده به بیرون کمپرسور جریان می یابد

اجزا کامل يک کمپرسور اسکرو در شکل زير ديده می شود

MYCOM / Mayekawa Mfg - MYCOM screw compressor has a robust construction.

دسته‌بندي كمپرسورها از نظر نحوه روغن‌كاري شدن


منظور از روغن‌كاري شدن، تماس روغن با گاز در محفظه تراكم مي‌باشد. بر اين اساس كمپرسورها را مي‌توان به دو دسته خشك یا فاقد روغن (Dry or Oil Free) و روغن كاري شونده (Lubricated) تقسيم كرد.

در كمپرسورهاي خشك، محفظه تراكم از قسمت انتقال قدرت كاملاً جدا بوده و لذا عملاً گاز مورد تراكم هيچگونه تماسي با ماده روان‌كننده ندارد.

در كمپرسورهاي از نوع پيستوني روان‌كاري شونده، اختلاط روغن با گاز مورد تراكم ناخواسته و از طريق نشت روغن از كارتل به بالاي پيستون ها و از كناره رينگ ها صورت مي‌گيرد.

در كمپرسورهاي از نوع دوراني روانكاري شونده اختلاط روغن با گاز مورد تراكم به طور عمدي صورت مي‌گيرد. در اين دسته از كمپرسورها روغن تحت فشار گاز خروجي از كمپرسور به محفظه تراكم فرستاده شده و ضمن اختلاط با گاز مورد تراكم عمليات روانكاري، خنك‌كاري و كاهش نشتي گاز از لقي موجود در بين قطعات را به‌عهده دارد. روغن مخلوط شده با گاز مورد تراكم در تله جدا كننده روغن (Oil Separator) از آن جدا شده و بعد از خنك‌كاري، به محفظه تراكم برگشت داده مي‌شود. امروزه با وجود مشكلات و مسائل متعددي كه در زمينه بهره‌برداري از كمپرسورهاي خشك، وجود دارد در بسياري از موارد شرايط بهره‌برداري و مشخصه‌هاي فيزيكي و شيميايي گاز مورد تراكم ايجاب مي‌كند كه عمل تراكم گاز در محفظه تراكم، در غياب روغن صورت پذيرد.

تولید اكسيژن، صنايع غذايي و دارويي، تراكم بسياري از گازهاي مورد استفاده در صنايع پتروشيمي و ... نمونه‌هايي از صنايعي بوده كه نسبت به حضور روغن در گاز مورد تراكم حساس مي‌باشند. هر چند كه كمپرسورهاي گريز از مركز، ذاتاً فاقد روغن
(
Oil Free) مي‌باشند ولي در كمپرسورهاي رفت و برگشتي و دوراني با اعمال تدابير لازم مي‌توان مانع از حضور روغن در محفظه تراكم شد. كمپرسورهاي خشك هر چند كه از نظر حداكثر دماي قابل تحمل در محفظه تراكم، در مقايسه با كمپرسورهاي روانكاري شونده داراي مزيت هایی می باشند (دماي مجاز در آن در حدود ۳۰ تا ٧۰ درجه سانتيگراد از دماي مجاز در كمپرسورهاي روانكاري شونده بيشتر است) و به همين خاطر نسبت تراكم بالاتري را در هر مرحله از اين كمپرسورها مي‌توان پيش‌بيني كرد ولي به‌لحاظ قيمت بالاتر، هزينه‌هاي تعمير و نگهداري بيشتر، پايين‌ بودن راندمان، قابليت اعتماد كمتر و ... امروزه به جز در موارد اجباري حتي الامكان سعي مي‌شود از كمپرسورهاي خشك استفاده نشود. ویژگي‌هاي نامطلوب كمپرسورهاي خشك باعث شده تا امروزه نگرش جديدي در اين زمينه مطرح شود و آن عبارتست از تزريق روغن به مقدار بسيار كم (در حد چند ppm) با سازگاري لازم گاز مورد تراكم در حضور روغن، حتي به مقدار ناچيز، موجب بهبود نسبي در عملكرد كمپرسورهاي خشك مي‌گردد.

در كمپرسورهايي كه به‌صورت خشك طراحي مي‌شوند لازم است تا قطعاتي كه در معرض سايش قرار دارند از كيفيت مطلوب‌تري در مقابل اصطكاك و عوارض ناشي از آن برخوردار باشند.

موادي نظير تفلون گرافيتي، گرانيت و ... به عنوان مواد اوليه با ضريب اصطكاك پايين، خاصيت خود روانكاري و ... جزو تركيبات مطلوب در ساخت رينگ هاي هادي و تراكم در كمپرسورهاي پيستوني و به عنوان ماده پوشش دهنده در ساخت روتور كمپرسورهاي اسکرو، شديداً مورد توجه مي‌باشند.

دسته‌بندي كمپرسورها از نظر آب بندی محور

مبناي اين دسته‌بندي، وضعيت آب بند كردن محور، مي‌باشد. كمپرسورها را از اين نظر مي‌توان به سه دسته تقسيم‌بندي كرد:

كمپرسورهاي بسته (Hermetic)

در اين دسته از كمپرسورها، كه عموماً براي سيستم‌هاي تبريد با ظرفيت كم (حداكثر ۲۰ تن تبريد) مورد استفاده قرار مي‌گيرند، الكتروموتور و كليه قطعات مربوط به كمپرسور، در درون يك محفظه كاملاً آب بند شده قرار داده مي‌شود. اساساً اين كمپرسورها به‌صورت يكبار مصرف، طراحي شده و تعمير‌ آن از نظر فني و اقتصادي توصيه نمي‌شود.

متأسفانه گاهي اوقات اين توصيه در ايران ناديده گرفته شده و بعضي از تعميركاران اقدام به تعمير آن مي‌كنند، كار چندان اصولي نمي‌باشد. البته تفاوت شرايط اقتصادي و اجرت تعميرات درايران با كشورهای صنعتي عامل اصلي اين نگرش مي‌باشد.

كمپرسورهاي نيمه بسته( Semi- hermetic)

كمپرسورهاي نيمه بسته را بايد نوعي كمپرسور بسته به حساب آورد، با اين تفاوت كه قسمت‌هاي سوپاپ، پيستون، ميل‌لنگ، پمپ روغن و ... آن قابل تعمیر مي‌باشند. اين كمپرسورها تمامي ويژگي‌هاي كمپرسورهاي بسته را از نظر آب بند بودن و عدم نشت گاز به بيرون دارا مي‌باشند. از اين كمپرسورها براي سيستم‌هاي تبريد در ظرفيت‌هاي ۲۰ تا ۱۵۰ تن تبريد استفاده مي‌شود.

كمپرسورهاي باز( Open)

در اين نوع كمپرسورها محور كمپرسور از كارتر و يا محفظه تراكم خارج گرديده و به‌طور مستقيم و يا غيرمستقيم (به كمك پولي) راه اندازي مي‌شوند. اساساًً اين كمپرسورها براي تمامي موارد (از ظرفيت كم تا بسيار زياد) مناسب بوده و تنها نقطه ضعف آن در مقايسه با دو طرح قبلي احتمال نشت گاز مورد تراكم از محل خروج شافت بوده كه آن هم با انتخاب سيستم آب بندی مناسب قابل حل مي‌باشد

دسته بندی کمپرسورها بر حسب فشار مکش ، دهش ، و ظرفیت آنها

پمپ خلا (Vacumm Pumps)

برخلاف اسم آن، در واقع پمپ هاي خلا نوعي كمپرسور بوده كه فشار قسمت مكش آن از فشار جو كمتر و فشار دهش آن اندكي از فشار جو بيشتر مي‌باشد. پمپ هاي خلا در طرح هاي مختلفي ساخته شده كه داراي قابليت‌هاي ذیل مي‌باشند:

گريز از مركز حداكثر خلا قابل دسترس 6mmHg

تناوبي حداكثر خلا قابل دسترس 0.5mmHg

انژكتورهاي بخاري حداكثر خلا قابل دسترس mmHg 0.05

دوراني حداكثر خلا قابل دسترس mmHg 0.00005

در بين طرح هاي فوق پمپ هاي خلا از نوع دوراني از مقبوليت بيشتري برخوردار مي‌باشند.

هواكش‌ها ( fans)

اين نوع كمپرسورها عموماً براي دبي زياد و فشار كم ( تا ۱∕۰بار) ساخته شده و عموماً از خانواده گريز از مركز مي‌باشند.

دمنده‌ها ( Blowers )

دمنده‌ها نوع خاصي از كمپرسورها بوده كه فشار نسبتاً كم و دبي نسبتاً زياد دارند. حداكثر فشار قابل دسترس توسط آنها (۲ـ۵∕۱بار) مي‌باشند. دمندهاي با فشار كم و دبي زياد از نوع گريز از مركز ساخته مي‌شوند. حال آنكه براي فشارهاي بالا ( نزديك به ۲ بار) و دبي كمتر نوع دوراني (Rotary) متداول‌تر مي‌باشد. ساخت دمنده‌هاي از نوع تناوبي (رفت و برگشتي) عملاً منتفي است.

كمپرسورها (Compressors)

كمپرسورها عموماً براي فشارهاي بالا (بيشتر از 2 بار) مورد استفاده قرار مي‌گيرند. امروزه كمپرسورهايي ساخته شده‌اند كه قادر به تراكم گازها تا فشار bar600 مي‌باشند.

دسته‌بندي كمپرسورها از نظر رفتاري

برحسب چگونگي فرآيند تراكم، كمپرسورها به دو دسته تقسيم‌ مي‌شوند:

الف: كمپرسورهاي جابه‌جايي مثبت (Positive Displacement)

ب: كمپرسورهاي گريز از مركز (Centrifugal)

در كمپرسورهاي جابه‌جايي مثبت، همواره مقدار معيني از گاز بين دو قطعه به تله انداخته شده و با كاهش حجم محفظه، فشار گاز افزايش مي‌يابد. اين كمپرسورها خودبه‌خود به دو دسته تناوبي (Reciprocating) و دوراني (Rotary) تقسيم مي‌شوند. البته هر يك از دسته‌هاي فوق تنوع زيادي در شكل و ساختار مكانيكي داشته ولي از لحاظ رفتاري داراي ويژگي‌هاي نسبتاً يكساني هستند.

در كمپرسورهاي جريان پيوسته، (گريز از مركز)، ابتدا انرژي جنبشي گاز مورد تراكم پيوسته در پروانه افزايش داده شده و سپس بخش اعظمي از انرژي جنبشي آن در يك مجراي گشاد شونده بنام حلزوني (Volute) به انرژي پتانسيل (فشار) تبديل مي‌شود.

انتخاب كمپرسور مناسب به شرايط و نوع بهره برداري بستگي دارد كه اهم آن به شرح ذیل مي‌باشد:

  • فشار و دبي مورد نياز
  • حساسيت به حضور روغن
  • خواص فيزيكي و شيميايي
  • بهاي انرژي
  • قابليت اعتماد
  • هزينه‌هاي تعمير و نگهداري و قطعات يدكي قيمت اوليه
  • حداكثر درجه حرارت قابل قبول

۱۳۸۷ اردیبهشت ۱۲, پنجشنبه

سامانه برق خودرو



سامانه (سیستم) برق رسانی خودرو
دستگاه برق رسانی که در زمان انتهای تراکم و ابتدای انفجار باعث جرقه زدن شمع می گردد.
اطلاعات مختصری در زمینه باتری ، مدارهای الکتریکی ،دینام، استارت،کویل،دلکو

الف )باتری


دستگاهی است که انرژی شیمیائی را به انرژی الکتریکی تبدیل می کند. به عبارت دیگر انرژی الکتریکی را به صورت انرژی شیمیائی در خود ذخیره کرده سپس به صورت انرژی الکتریکی پس می دهد. هر باتری دارای دو قطب می باشد که صفحات مثبت در داخل باتری بهم متصل شده تشکیل قطب مثبت و صفحات منفی نیز به هم وصل شده قطب منفی را تشکیل می دهند.
تشخیص قطبین از یکدیگر
معمولاً قطب مثبت را قطورتر ار قطب منفی می سازند و با قطب مثبت را با علامت(+)یا (P) ویابا حلقه پلاستیکی قرمز رنگ و قطب منفی را با علامت (-)یا(N)و یا با حلقه پلاستیکی سیاه یا آبی رنگ مشخص می کنند.
اگریک سیم به یک قطب و یک سیم دیگر را به قطب دیگر وصل ‎کنیم سپس دو سر دیگر سیمها را داخل محلول آب نمک قرار ‎دهیم از اطراف هر کدام از سیمها که حباب بیشتری متصاعد شود آن سیم مربوط به قطب منفی است.
نگهداری باتری:
برای دوام افزایش طول عمر باتری باید باتری همیشه در حال شارژ باشد و اگر باتری مدت زیادی شارژ نشود،صفحه های آن سولفاته شده وغیر قابل استفاده خواهد شد و در زمستان یخ می زند.غلظت آب باتری باید اندازه باشد و سطح آب باتری مقداری از درب باتری پائین تر بوده بطوریکه روی پلیت های باتری (یک سانتی متر بالای صفحات)مایع باتری قرار گرفته باشد وهفته ای یک بار کنترل شود. بستهای باتری با استفاده از جوش شیرین و آب گرم تمیز و محکم شود و روی بستهاگریس مالیده شود و هیچگاه برای بستن یا باز کردن بستهای باتری فشار یا ضربه به آنها وارد نیاورید، برای اندازه کردن آب اسید داخل باتری در تابستان آب مقطر ودر زمستان آب اسید اضافه شود. و سوراخهای هواکش درب خانه های باتری باز باشد و از قرار دادن ابزار کار و اشیائ فلزی بر روی باتری خودداری شود.
الکترولیت یا اسید باتری:
مایع داخل باتریهای سربی محلول اسید سولفوریک H2SO4 می‎باشد که به نسبت 75% آب مقطر و 25% اسید تهیه می‎شود.
درصد مخلوط اسید و آب مقطرو غلظت آنرا توسط هیدرومتر یا اسید سنج تعیین می‎کنند.
توصیه 1- موقعی که برای مدت طولانی نخواهید از خودرو تان استفاده کنید به مرور زمان برق باتری تخلیه می شود در اینصورت برای جلو گیری از خالی شدن برق باتری ابتدا باید آن را خشک نموده و سپس باتری را دور از رطوبت نگهداری نمائید.
توصیه 2- موقعی که استارت می زنید و برق به صفحه نمایشگر سرعت نمی رسد ابتدا باتری را بررسی کنید و سر باتری یا بست ها و یا کابل ها را بررسی نمائید.
توصیه 3- از اتصال کوتاه نمودن قطبهای باتری بپرهیزید زیرا باعث ترکیدن باتری و ایجاد ضایعه میگردد.
توصیه 4- دقت شود که سوراخهای هواکش درب خانه های باتری باز باشند.


ب) مدارهای الکتریکی
مدارهای اصلی الکتریکی خودروها عبارتند از:
1- مدار جرقه 2- مدار شارژ 3-مدار روشنائی
علاوه بر مدارهای اصلی فوق ،در اکثر خودروها مدارهای فرعی نیز وجود دارد که از جمله مدار استارت ،مداربوق،مداربرف پاک کن،وغیره می باشد.
مدار جرقه:
بر دونوع است:
1- مدار اولیه یا مدار فشار ضعیف
2- مدار ثانویه یا مدارفشار قوی.
اگر یک موتور احتراق داخلی که به کمک جرقه شمع کار می کند بخواهد بطور صحیح و مناسب به کار خود ادامه دهد. لازم است که جرقه درست در لحظه معین و مورد نیاز به الکترودهای شمع آن تحویل داده شود. اکثر عیوب جزئی و اشکالات که باعث روشن نشدن و یا درست کار نکردن موتور می شود را می توان به درست کارنکردن سیستم جرقه نسبت داد.
اصول کار مدار جرقه بصورت زیر است:
ولتاژ خیلی کم باتری(12ولت)به کمک کویل و پلاتینهای دلکو در لحظه معینی به ولتاژ نسبتاً زیادی تبدیل شده و به وسیله چکش برق و درب دلکو به شمع سیلندری که در اواخر مرحله تراکم قرار دارد منتقل می شود. بدین صورت که هنگامی که دهانه پلاتینهای دلکو بسته است هسته مرکزی کویل در اثر عبور جریان باتری از سیم پیچی اولیه کویل آهنربا شده و درست در لحظه ای که دهانه پلاتینهای دلکو بوسیله چهار ضلعی میل دلکو از یکدیگر جدا می شوند، به کمک خازن (فیوز دلکو)ولتاژ فوق العاده زیادی در سیم پیچی ثانویه کویل پدید می آید ،این ولتاژ زیاد به برج مرکزی درب دلکو منتقل شده و از آنجا توسط چکش برق و بنا به ترتیب احتراق صحیح به شمع سیلندری از موتور که در حوالی انتهای مرحله تراکم قراردارد می رسد(هر یک از برجهای فرعی درب دلکو توسط سیم ولتاژ زیاد که به وایر موسوم است به یکی از شمع ها متصل هستند.ضمناً برج اصلی درب دلکو نیز توسط وایر به برج مرکزی کویل مرتبط است).


ج) کویل و ساختمان آن:
کویل ترانسفورماتور فشار قوی است که وظیفه دارد ولتاژ ضعیف باتری را بین 5000تا 25000 ولت افزایش دهد.علت اختلاف دو عدد فوق شرایط مختلف کار موتور می باشد که در حالت عادی احتیاج به ولتاژ بین 5 تا 10 کیلو ولت ولی در شرایطی که هوا سرد است یا مقاومت در دهانه پلاتینهای شمع زیاد است مانند رسوب گرفتگی، زیاد بودن سوخت کاربراتور، روغن سوزی داشتن موتور و غیره ولتاژ جرقه باید بیشتر باشد.
کویل از قطعات:
1- سیم پیچهای اولیه
2-سیم پیچهای ثانویه
3-هسته کویل
4- غلاف یا جلد کویل
5-مقاومت کویل تشکیل یافته است.


د) دلکو:
دستگاهی است که با انرژی گرفتن از موتور وظیفه قطع و وصل جریان مدار اولیه کویل را به عهده دارد.
وظیفه دلکو در مدار جرقه زنی به شرح زیر است:
1- قطع و وصل مدار اولیه توسط پلاتین
2- تقسیم ولتاژ قوی خروجی کویل بین شمعهای موتور برحسب ترتیب احتراق هر موتور
3- تنظیم پیش جرقه متناسب (آوانس) برحسب دور و نیاز موتور بطور خودکار
پلاتین: در دلکوهای معمولی اتومبیلها برای قطع و وصل مدار اولیه کویل برای ایجاد جریان جریان متغیر از پلاتین استفاده می‎شود. چون برق باتری از نوع جریان مستقیم است و برای بالا بردن ولتاژ در مدار ثانویه کویل نیاز به جریان متغیر است .
درب دلکو: ولتاژ قوی کویل را دریافت داشته و سپس توسط چکش برق بین شمعها تقسیم می‎نماید.
خازن دلکو: جهت بالا بردن ولتاژ در ثانویه به کار می‎رود.
چکش برق: وظیفه دارد برق ولتاژ قوی در دلکو را بطور منظم به وایرها جهت جرقه شمع برساند. جنس چکش برق هم مانند در دلکو عایق بوده و در مقابل حرارت نیز مقاوم است.
تنظیم دهانه پلاتین:پس از هر تعویض یا سرویس باید دهانه پلاتین توسط فیلر اندازه گیری شود که این اندازه در اتومبیلهای مختلف متفاوت است. در مورد پیکان این مقدار 4ر0 میلیمتر می باشد.
نگهداری دلکو:
هر8000کیلومتر دردلکورابازکنیدوهنگامی که چکش برق راازروی میل دلکو برمی دارید،دوسه قطره روغن موتورداخل سوراخ میل دلکوبریزید.این کارباعث می شود وزنه های مربوط به آوانس وزنه ای دلکو روغنکاری شوندوگیرنکنند.درضمن این روغن شفت دلکورانیز روغنکاری می کند .همچنین مقداری گریس یاوالوالین به قسمت چهارضلعی میل دلکو که زایده فیبری پلاتین متحرک روی آن حرکت می کندبمالید.میل دلکورابیش ازاندازه روغنکاری نکنید،زیرا ممکن است مقدار زیادآن باعث شودکه دهانه پلاتین ها نیز چرب شودودرمدار جرقه اشکال ایجادکند.
بعدازهر 8000کیلومتر سطوح تماس پلاتین هابایکدیگررابررسی کنید.اگر روی سطح تماس یکی ازپلاتین ها برجستگی وروی سطح تماس پلاتین دیگر فرورفتگی به وجودآمده باشدبایدپلاتین هاراعوض کنید.





ه) شمع:
آخرین قطعه مدار ثانویه است که ولتاژ قوی کویل را بصورت پرتاب جرقه در آورده و باعث انفجار در اتاق احتراق می شود.
عیب‎یابی موتور از طریق شمع:
از رنگ الکترود شمع می‎توان به عیب آن پی برد:
اگر پایه شمع به رنگ قهوه‎ای و الکترود آن به رنگ خاکستری باشد نوع شمع برای موتور مناسب است. موتور در شرایط خوبی کار می‎کند. سوخت و هوای آن مناسب است. روغن سوزی ندارد. زمان جرقه زنی مناسب است.
اگر پایه شمع قهو‎ه‎ای روشن و الکترودهای آن به رنگ سفید باشد. نوع شمع برای موتور مناسب نیست. سوخت مناسب نیست یعنی هوا نسبت به سوخت بیشتر است به همین دلیل شمع حرارت زیادی دریافت می‎کند.
اگر پایه و الکترودهای شمع دوده گرفته باشد. شمع مناسب نیست. یعنی شمع سرد است. سوخت مناسب نیست یعنی بنزین نسبت به هوا بیشتر می‎باشد. موتور سرد کار می‎کند.
اگر پایه و الکترودهای شمع دود زده و چرب باشد. موتور روغن سوزی دارد. شمع مناسب نیست یعنی سرد است. سوخت مناسب نیست.
توصیه می شود هر 8000 کیلومتر شمع ماشین را تمیز و هر 16000 کیلومتر آنرا تعویض نمائید

و) استارت
دستگاهی است که انرژی الکتریکی را به مکانیکی تبدیل نموده و مکانیزم آن راه اندازی موتوربوده و انرژی اولیه خود را از باتری تأمین می کند.
ز) دینام
دستگاهی است که محرک آن موتور بوده و انرژی مکانیکی را به الکتریکی تبدیل می نماید کاربردآن جهت تأمین انرژی الکتریکی دستگاههای مصرفی خودرو و شارژ باتری می باشد.


ح ) آفتامات
دستگاهی است که به منظورتنظیم ولتاژ و جریان خروجی دینام بکار رفته است.
توجه:به یاد داشته باشید که معمولاً شمع های موتور بازائ هر 5000کیلومتر مسافت نیاز به سرویس دارند و عمر شمع ها نیز بین 25000تا 35000کیلومتر می باشند.

انواع سیستم جرقه

مقدمه ....................
موتورهاي احتراق داخلي توسط انفجار (احتراق ) مخلوط هوا و سوخت در سيلندر، نيرو توليد ميكند . موتورهاي گازوييل سوز ( ديزل) با بالا بردن فشار تراكم در اتاق احتراق ، عمل اشتعال خود به خود انجام ميگيرد. اما در موتورهاي بنزيني( يا گاز سوز ) قابليت بالا بردن فشار تراكم در حد موتورهاي ديزلي نميباشد ، بنابراين لازم است مخلوط بنزين و هوايي (كه توسط كاربراتور به سيلندرها فرستاده ميشود) به روش ديگري محترق گردد. اين كار در موتورهاي بنزيني بر عهده سيستم جرقه ميباشد .

توجه : حتما اصطلاح انژكتوري – بنزيني را شنيده ايد ، اين نوع موتورها نيز مانند موتورهاي بنزيني – كاربراتوري به احتياج به سيستم جرقه دارند.فقط نحوه سوخت رساني آنها به كمك انژكتور انجام مي پذيرد.
وظيفه سيستم جرقه

ايجاد جرقه براي احتراق مخلوط بنزين ( يا گاز ) و هوا لازم است اما براي روشن كردن موتور كافي نيست .مقدار ولتاژ نيز بايد براي احتراق كافي باشد همچنين زمان ارسال جرقه نيز مهم ميباشد . اين زمان حتما بايد اندكي قبل از رسيدن پيستون به نقطه مرگ بالا باشد ( TDC ) . علاوه براين مدت زمان جرقه نيز در احتراق اثر زيادي دارد كه اين كار نيزبه عهده سيستم جرقه ميباشد . بطور خلاصه ميتوان گفت وظيفه سيستم جرقه :

ارسال جرقه در مكان مناسب (در اتاق احتراق )
و زمان مناسب (كمي قبل از انتهاي تراكم )
و ولتاژ مناسب ( براي ايجاد قوس الكتريكي بين الكترود مثبت و منفي شمع)
و طول مدت مناسب (براي احتراق مناسب تر )

انواع سيستم هاي جرقه
از هنگامي كه اتينه لنوير( مراجعه به تاريخچه اتومبيل ) اولين موتور احتراق داخلي را ساخت و تكميل آن توسط چالز فرانكلين كترينگ، سيستم هاي مختلفي براي ايجاد جرقه در اتاق احتراق ابداع شده ا ند و روز به روز كارايي اين سيستم بالاتر رفته است . دسته بندي تمامي سيستم هاي جرقه موجود كار دشواري ميباشد. برخي از اين سيستم ها در قسمتهايي باهم شباهت دارند درحالي در قسمتهاي ديگر باهم متفاوتند .شركتهاي توليد كننده روشهاي مختلفي را براي انجام اين كار ابداع كرده اند .

در اينجا سعي ميشود ابتدا دسته هاي اصلي سيستهاي جرقه بيان شده . سپس تا انجا كه ممكن است انواع سيستم هاي بكار رفته در خودروها ( در هر دسته ) بطور خلاصه بيان شود.

دسته بندي سيستم هاي جرقه
بطور كلي سيستم هاي جرقه به 4 دسته كلي تقسيم بندي ميشوند.
سيستم جرقه مگنتي
سيستم جرقه پلاتيني
سيستم جرقه الكترونيكي
سيستم جرقه كنترل هوشمند

1. سيستم جرقه مگنتي Magneto Ignition System
يكي از سوالات اساسي براي تعيين سيستم جرقه مناسب در خودرو اين است كه آيا آن خودرو از باتري استفاده ميكند يا خير . در اكثر خودروهاي امروزي باتري وجود دارد اما استثناهايي نيز وجود دارد، مثلا اتومبيلهاي مسابقهاي براي كاهش وزن خودرو باتري را پس از استارت زدن از روي اتومبيل خارج ميكنند ( يا از دستگاههاي استارتر مخصوص براي بكار انداختن موتور استفاده ميكنند ) يا موتور سيكلت ها كه انواع اوليه آن فاقد باتري بودند .

تنها سيستمي كه ميتواند بدون باتري هم جرقه لازم را توليد كند ،سيستم جرقه مگنتي ميباشد. اتومبيلهاي اوليه از اين سيستم استفاده ميكردند. امروزه موتورهاي هواپيماها ، اتومبيلهاي مسابقه اي و انواع زيادي از موتورهاي كوچك و بسياري از موتورسيكلت ها ( قديمي .... توجهداشته باشيد وقتي ميگوييم منظور موتور سيكلتهايي است كه داراي باتري نميباشند ) از سيستم جرقه مگنتي استفاده ميكنند. در اتومبيلهاي اوليه موتور توسط يك هندل به حركت درميآمد و جريان الكتريكي فقط براي ايجاد جرقه و محترق كردن سوخت استفاده ميشد. اين هندل در موتور سيكلت ها به صورت پايي وجود دارد. و در موتور هاي كوچك زميني بنزيني با استفاده ازيك سيم عمل همل هندل انجام مي شود ( كشيدن سيم ) .
مگنت هاي اوليه نوعي ژنراتور الكتريكي بودند كه برق مورد نياز سيستم هايي كه باتري ندارند را تامين ميكند. مگنت روي موتور نصب شده و انرژي حركتي موتور را گرفته ( مثلا روي فلايويل موتورسيكلت ها) و انرا به انرژي الكتريكي تبديل ميكند .اجزاي اصلي اين سيستم بسيار ساده ميباشد . يك فلايويل ، چند آهنرباي دائم كه روي فلايويل نصب ميشوند ( همان مگنت ) و يك (يا چند ) سيم پيچ ( بوبين يا كويل ) و در نهايت شمع و واير شمع .موتورهاي گازي نمونه بسيار خوبي از سيستم هاي اوليه مگنتي ميباشند . اگر درپوش سمت فلايويل موتور را جدا كرده و فلايويل را جدا كنيد . بوبين هاي مشاهده ميشوند.
اجزاء اصلي سيستم جرقه مگنتي ساده
اساس كار :
اگر سيمي خطوط ميدان مغناطيسي را ( به طور متناوب ) قطع كند در آن سيم جريان الكتريسته بوجود ميآيد . از اين قانون براي توليد جريان برق توسط تمامي مولد ها استفاده ميشود حال ميتواند ميدان مغناطيسي متحرك بوده و سيم ثابت باشد ( مگنتي ، آلترناتورها )يا برعكس سيم پيچ متحرك باشد و ميدان مغناطيسي ثابت ( دينام ). در سيستم مگنتي ، ميدان توسط فلايويل كه داراي چند آهنرباي دائم است بوجود ميايد . فلايويل حول سيم پيچ ( بوبين ) كه ثابت هستند ميگردد و اگر پلاتين بسته باشد (شكل A,B) در سيم پيچ اوليه در جريان الكتريسيته بوجود ميايد.

هنگامي كه بادامك به پلاتين متحرك نيرو وارد ميكند و آنرا از پلاتين ثابت جدا ميكند (شكلC,D) جريان به سمت خازن جاري ميشود .( فقط طي چند صدم ثانيه اين مسير بوجود ميآيدو خازن پر ميگردد) خازن پس از پر شدن، تخليه شده و جريان به سمت سيم پيچ اوليه حركت ميكند و اصطلاحا مدار اوليه را شارژ ميكند پس از تخليه كامل برق خازن ، جريان در سيم پيچ اوليه قطع ميشود در اثر قطع ناگهاني جرياني به سيم پيچ ثانويه القا شده و با توجه به نسبت دور سيم پيچ ثانويه به اوليه ولتاژ آن به ميزان قابل توجهي افزايش پيدا ميكند .اين ولتاژ آنقدر هست تا بتواند از فاصله دهانه شمع عبور كند و در اين لحظه شمع جرقه ميزند.
توجه : نحوه عملكرد دقيق خازن وپلاتين در سيستم جرقه پلاتيني كاملا بيان خواهد شد

توجه : سيستم هايي كه داراي اين نوع جرقه مگنتي بودند ( معمولا موتور سيكلت ها قديمي) يك بوبين ديگر نيز براي تامين انرژي مورد نياز آن دارند . اين بوبين دوم معمولا برق لازم جهت روشنايي خودرو را تامين مينمود
مزايا و معايب :
با توجه به اين كه اين نوع سيستم اولين طرح براي سيستم جرقه ميباشد معايب بسيار دارد . مثلا كنترل كاملي بر تايمينگ جرقه نميتوان داشت مقدار آوانس اوليه نسبت به انواع ديگر محدود است . مزيت اين نوع سيستم ارزاني و كوچكي مجموعه ميباشد . بعلاوه نيازي به باتري بعنوان يك نيروده اوليه نيست .

نكته : در بازار سيستمي وجود دارد كه به نام سيستم مگنتي براي اتومبيلها ( طرح شتاب) . اين سيستم جزء سيستمهاي جرقه مگنتي به شمار نمي آيد .نام اصلي اين سيستم magnetically controlled electronic ignition ( كنترل الكترونيكي جرقه بوسيله مگنت ) كه به اختصار آنرا مگنتي مينامند و جزء سيستم جرقه الكترونيكي ميباشد

نكته : موتورسيكلتهاي امروزي كمتر از سيستم هاي ساده مگنتي استفاده ميكنند . اين موتورها يا از نوع مگنتي- باتري ميباشند (كه گروهي از معايب سيستم مگنتي ساده را رفع كرده ) و يا اينكه از سيستم باتري و كويل ( جرقه پلاتيني ساده ) و يا از نوعي سيستم جرقه الكترونيكي ( معمولا از نوع CDI ) استفاده ميشود

سوخت رسلنی























آشنایی با سیستمهای سوخت رسانی کاربراتوری و انژکتوری
آشنایی با سیستمهای سوخت رسانی کاربراتوری و انژکتوری و مزایای استفاده از تکنولوژی های جدید سوخت رسانی در خودرو
Electronic Fuel Injection


سیستم سوخت رسانی برای خودرو به مانند دستگاه گوارش و دستگاه تنفسی برای بدن انسان ضروری و بسیار حساس است که بایستی انرژی لازم برای استفاده و کار خودرو را فراهم سازد . اما این سیستم های سوخت رسانی چگونه چنین کاری را انجام میدهند ؟ بر چند نوع هستند ؟ مزایا و معایب این نوع سیستم ها چیست ؟ چه نوع سیستمی برای خودرو اقتصادی تر و مناسب تر است ؟ و . . . ده ها سئوال دیگر که ممکن است برای همه ی کسانی که به نوعی با خودرو سر و کار دارند پیش آید . از سال 1383 ساخت خودرو های سواری کاربراتوری تقریبا به حالت تعلیق در آمده است و شرکت ها تنها مجازند از سیستم های انژکتوری برای محصولات خود استفاده کنند . حال آنکه تعدادی از رانندگان قدیمی خودرو همچنان بر استفاده از خودروهای کاربراتوری اصرار می ورزند . اصلا کاربراتور و انژکتور چه تفاوتی با هم دارند ؟ چه کاری انجام می دهند ؟ و کدامیک بر دیگری ارجحیت دارد ؟ و . . . سئوالات مشابه دیگر . در این نوشتار سعی داریم به صورت اختصار با هر دو نوع سیستم سوخت رسانی آشنا شویم و در نهایت با مزایا و معایب هر دو آشنایی پیدا کرده تا بتوانیم به درستی در خصوص استفاده از این سیستم ها در خودرو تصمیم گیری نماییم .کاربراتور چیست ؟
کاربراتور مهمترین قطعه در سیستم های سوخت رسانی کاربراتوری است . وظیفه ی اصلی کاربراتور تهیه مخلوط مناسبی از هوا و سوخت برای شرایط مختلف کار موتور می باشد . یک کاربراتور بایستی خواسته های زیر را برآورده سازد :
1 . تهیه مخلوط صحیح هوا و سوخت برای شرایط مختلف کار موتور در زمانی بسیارکوتاه
2 . مصرف کم سوخت در وضعیت کار عادی موتور
3 . امکان تامین حداکثر قدرت در حالت بار کامل
4 . روشن شدن موتور در هر درجه حرارت و کارکرد منظم آن در حالت دور آرام
5 . پایداری تنظیم های انجام یافته بر روی کاربراتور برای یک مدت طولانی و امکان تنظیم ها با توجه به شرایط کاری موتور
6 . سادگی ، قابلیت اطمینان و دوام
7 . سهولت تعمیر و نگهداریکاربراتور چگونه کار می کند ؟
عامل اصلی کار کاربراتور ایجاد مکش ( خلاء ) در روی مجرای خروج سوخت ( ژیگلور ) می باشد .این کار توسط قسمتی از بدنه کاربراتور به نام ونتوری یا گلوگاه انجام می گیرد . ونتوری در حقیقت مقطع کاهش بدنه کاربراتور می باشد . با باز شدن صفحه گاز هوا توسط سیلندر موتور مکیده شده و به داخل کاربراتور جریان می یابد . در هنگام عبور از ونتوری به علت کاهش مقطع عبور ، سرعت هوا افزایش یافته و فشار محفظه ونتوری کاهش می یابد و مکشی ایجاد می نماید که به مراتب از سایر مقاطع کاربراتور بیشتر است . بنابراین چنانچه مجرای سوخت به این قیمت متصل شود ، سوخت مکیده شده و پس از مخلوط شدن با هوا به داخل سیلندر وارد می شود .
انواع کاربراتور : کاربراتور ها از نظر جریان هوا به سه دسته تقسیم می شوند :
1 . کاربراتور با جریان هوا از بالا به پایین : در این کاربراتور نیروی جاذبه به جریان مخلوط سوخت و هوا به داخل موتور کمک می کند و در نتیجه تغذیه موتور بهتر انجام میشود . علاوه بر آن دسترسی به کاربراتور از نظر فضای تعمیراتی نیز بهتر می باشد . به همین دلیل این نوع کاربراتور برروی اکثر خودروها به کار می رود که می توانند شامل کاربراتورهای یک مرحله ای یا دو مرحله ای باشند . کاربراتور خودروهای نیسان ، پراید ، پژو از این نوع می باشند .
2 . کاربراتور با جریان هوا از پایین به بالا : این نوع کاربراتور بیشتر در گذشته به کار گرفته می شده است و علت آن جلوگیری از ورود سوخت به صورت مایع به موتور بود . در حال حاضر با توجه به اینکه این کاربراتور از نظر فضای تعمیراتی از قابلیت دسترسی خوبی برخوردار نیست و علاوه برآن روشن شدن موتور در هوای سرد نیز به خوبی انجام نمی شود ، کاربردی ندارد . کاربراتور خودروهای قدیمی دهه ی 60 19 معمولا از این نوع می باشد .
3 . کاربراتور با جریان هوای افقی : مزیت اصلی این نوع کاربراتور ارتفاع کمی است که درزیر درپوش موتوراشغال می کند . این نوع کاربراتور می تواند دارای ونتوری ثابت یا متغیر باشد . کاربراتور خودرو پیکان از نوع کاربراتور با جریان هوای افقی و با ونتوری متغیر می باشد .
کاربراتورها عموما از قسمت های زیر تشکیل شده اند :
محفظه ی گاز – محفظه ی ساسات – بدنه – محفظه راه انداز – پمپ شتابدهنده که ونتوری در کاربراتورهای یک مرحله ای یا ونتوری ها در انواع دو مرحله ای در بدنه اصلی جای می گیرند . صفحه گاز در محفظه ی گاز و صفحه ی ساسات در محفظه ی ساسات قرار دارند . محفظه ی راه انداز و پمپ شتابدهنده نیز در کاربراتورهای پیشرفته برای جبران بعضی کاستی های کاربراتور های اولیه طراحی و استفاده می شوند .
تا دهه 1960 کاربراتور در بسیاری از سیستم های سوخت رسانی استاندارد مورد استفاده قرار می گرفت . در دهه 1970 در طی تحقیقات و نوآوری هایی سیستم EFI که در آن سوخت توسط انژکتورها با کنترل الکترونیکی به مجرای مکش تزریق می گردید به جای کاربراتور در نظر گرفته شد .
باید بدانیم که وجود چه معایبی از سیستم های کاربراتوری موجب شده تا با کنار گذاشتن آن سیستم انژکتوری را جایگزین آن نماییم . دو جزء اساسی سیستم های کاربراتوری کاربراتور و دلکو می باشند .
کاربراتور ها دو وظیفه اصلی به عهده دارند :
1 . مخلوط کردن سوخت و هوا به نسبت ترکیبی مشخص که در هر کاربراتور به عنوان یک پارامتر اساسی تعیین می شود .
2 . توزیع سوخت پودر شده به میزان برابر بین سیلندرها .
دلکو نیز دو وظیفه اصلی به عهده دارد :
1 . تولید برق مبتنی بر مکانیزم کارکرد پلاتین و فیوز ( خازن ‌) دلکو .
2 . توزیع برق در روی سر شمع ها در زمان لازم .
معایب عمده و ذاتی کاربراتور :
با دقت در انجام کار کاربراتور می توان دید علی رغم تمام محاسنی که کاربراتور برای خودرو دارد چند عیب ذاتی بزرگ دارد که چشم پوشی از آنها امکان پذیر نیست از جمله
1 . عدم تناسب میزان مخلوط شدن هوا و سوخت : این میزان ثابت نبوده و به دلیل چگالی نامتناسب این دو ماده که یکی گازی و دیگری مایع است تنها در یک زاویه خاص از دریچه کاربراتور این نسبت رعایت شده و در بقیه موارد این تناسب به هم می خورد .
2 . کاربراتور شدیدا وابسته به شرایط محیط است : وابستگی شدید کاربراتور به شرایط محیط به خصوص دما و فشار باعث می شود که به جرات بتوان گفت هیچ خودرو کاربراتوری در حالت تنظیم کامل کار نمی کند .زمانی که یک خودرو کاربراتوری را تنظیم می کنید نا خودآگاه این تنظیم را بگونه ای انجام خواهید داد که فقط و فقط خودرو در همان ساعت و همان مکان تنظیم باشد و به محض تغییر محل یا تغییر ساعت ، خودرو از تنظیم خارج می شود . احتمالا شما در هنگام رانندگی از شهری مانند تهران به شهری دیگر مانند رشت این تغییر رفتار محسوس کاربراتور و بد روشن شدن و تنظیم نبودن خودرو را یا به طور کلی بد روشن شدن خودروهای کاربراتوری در هنگام زمستان و یا صبح زود تجربه کرده اید .
3 . عدم توزیع یکسان سوخت به سیلندرها : از آنجایی که کاربراتور وظیفه انتقال یک سیال را به سیلندرها به عهده دارد و این انتقال بدون هیچ دخالتی انجام می شود طبیعی است که به سیلندرهایی که به کاربراتور نزدیکترند سوخت بیشتری منتقل شده و بازده آنها بیش از سیلندرهای دورتر به کاربراتور می باشد . این موضوع باعث ایجاد یک نوع عدم بالانسینگ موتور می شود که در صورت استفاده از کاربراتور اجتناب ناپذیر است .
4 . خفه کردن کاربراتور : این مشکل در کلیه کاربراتورهایی که واحد پمپ شتابدهنده دارند دیده می شود که در زمان خاموشی موتور با چند بار فشردن پدال مقداری سوخت وارد سیلندر می شود و کاربراتور فلوت می کند . در حالی که این موضوع در خودروهای انژکتوری اصلا مصداق ندارد .
5 . پدیده قفل گازی : این پدیده پس از خاموش کردن موتور رخ می دهد . وقتی که موتور و متعاقب آن پمپ بنزین خاموش می شود بنزینی که در لوله ها و کاربراتور موجود است بر اثر از دست دادن حرکت خود و نیز همنشینی با گرمای موتور بخار شده و باعث دیر روشن شدن خودروهای کاربراتوری پس از چند لحظه خاموش شدن می شوند .این پدیده در خودروهای انژکتوری نیز اتفاق می افتد اما بلافاصله پس از باز کردن سوئیچ با کارکرد پمپ بنزین قبل از روشن شدن موتور این موضوع منتفی می شود .
6 . وابسته بودن به نوع بنزین : اصولا یکی از پارامترهای کیفی بنزین عدد اکتان است . این عدد بدون واحد در واقع معیاری است که به نوعی می تواند به ما نشان دهد که تا چه حد می توانیم بنزین را تحت فشار قرار دهیم بدون آنکه بنزین دچار خودسوزی و انفجار شود .هر چه عدد مزبور به عدد 100 نزدیکتر باشد کیفیت بنزین مصرفی به اصطلاح بهتر خواهد بود .طبیعتا در لحظه تنظیم موتور این کار با استفاده از بنزین مشخصی صورت می گیرد . حال اگر نوع بنزین و در نتیجه عدد اکتان آن تغییر کند نیازمند تنظیم جدیدی خواهیم بود .اکثر کسانی که از بنزین معمولی در خودرو کاربراتوری خود استفاده می کنند پس از استفاده از بنزین سوپر شاهد این تفاوت کارکرد موتور می شوند .
7 . تنظیمات زیاد و پیچیدگی زیاد مکانیکی : موجب می شود که تعمیر کاران اغلب به دلیل عدم آگاهی از تنظیمات دقیق و یا عدم استفاده از ابزار مخصوص های لازم نسبت به تنظیم همه جانبه آن غفلت ورزیده و این خود مزید بر علت می شود علاوه بر این باعث خرابی های زودرس نیز خواهد بود .
معایب عمده ذاتی دلکو :
1 . شدت جرقه به دور موتور وابسته است : تولید برق در خودرو به دلیل مکانیزم خاص عملکردی پلاتین و خازن دلکوست . در یک کویل ساده در زمانی که پلاتین بسته است جریان از مسیر کویل اولیه و پلاتین عبور کرده و به بدنه می رسد . این عمل موجب شارژ شدن جریانی سیم پیچ اولیه می شود . اصولا سیم پیچ ها دارای خاصیت مشابهی با خازن ها هستند با این تفاوت که خازن ها با تغییرات ولتاژ مخالفت کرده و در زمان افت ولتاژ شبکه با دادن ولتاژخود باعث ثابت ماندن آن در سیتم شده اما سیم پیچ ها دارای این ویژگی هستند که سعی دارند با دادن جریان اضافی مقدار جریان عبوری از خود را ثابت نگه دارند .
تا زمانی که پلاتین بسته است هیچ اتفاقی نمی افتد . به محض باز شدن پلاتین سیم پیچ که سعی دارد جریان خود را ثابت نگه دارد به اجبار جریان خود را به خازن هدایت می کند . خازن وقتی در این حالت قرار می گیرد ولتاژ روی آن به شدت افزایش یافته و حتی به بالای 300 ولت نیز میرسد . این شدت موجب می شود که جریان تغییر مسیر داده و به سیم پیچ برگردد . این تغییر جریان تا شارژ مجدد سیم پیچ ادامه داشته و دوباره جهت جریان بین سیم پیچ و خازن تغییر می کند . تا زمانی که پلاتین باز است این نوسان بارها انجام شده که نتیجه آن تغییر شار مغناطیسی و تحریک سیم پیچ ثانویه و ایجاد جرقه برروی شمع ها است . در هر بار باز شدن پلاتین این عمل تکرار می شود .در این حالت موتور در دور آرام هیچ مشکلی عملکردی ندارد اما با افزایش دور موتور زمان بسته شدن پلاتین ناخودآگاه کوتاه شده و عمل شارژ و دشارژ کویل خارج از بازه زمانی باز و بسته شدن پلاتین قرار می گیرد . اینجاست که عیب بزرگ سیستم جرقه زنی دلکو ظاهر می شود . کویل به دنبال پلاتین چون زمان کافی برای شارژ و دشارژ سیم پیچ اولیه ندارد نمی تواند شار لازم برای تحریک کامل سیم پیچ ثانویه را به دست آورد و لذا شدت جرقه در دورهای بالاتر به طور محسوسی کاهش یافته و خودرو در دور بالا دچار لرزش زیاد کاهش راندمان موتور و افزایش مصرف بنزین به صورت تصاعدی می شود .
2 . شدت توزیع جرقه بر روی سر شمع ها یکسان نیست : مسئله وجود وایر شمع ها و مشکلات آن همیشه یک معضل بوده است . اما مشکل عمده آن مسئله نا هماهنگ بودن طول وایرهاست که موجب نا موزونی شدت جرقه در سر شمع ها می شود .
3 . عدم تناسب آوانس های دینامیکی و استاتیکی :
الف ) آوانس استاتیکی که با حرکت دادن موضعی دلکو ایجاد شده و توسط فرد تنظیم می شود .
ب ) آوانس دینامیکی که شامل آوانس های خلائی و وزنه ای هستند که به طور اتوماتیک توسط دلکو تنظیم می شوند . آوانس استاتیکی با توجه به دخالت دست همیشه دقیق تنظیم نمی شود و از طرفی به آوانس خلایی نیز نمی توان اطمینان داشت زیرا با هر بار فشردن و یا رها کردن گاز خلاء منیفولد کم و زیاد شده و آوانس خودرو به هم میریزد و از جانب دیگر آوانس وزنه ای نیز با توجه به اتکا بر نیروی گریز از مر کز و خاصیت غیر خطی فنر وزنه ها معمولا مقدار مناسبی را به دست نمی دهد . تمامی این عوامل دست به دست هم می دهند تا آوانس دلکو هرگز تنظیم قابل قبولی ارائه ندهد .
4 . تنظیمات زیاد و پیچیدگی زیاد مکانیکی : موجب می شود که تعمیر کاران اغلب به دلیل عدم آگاهی از تنظیمات دقیق و یا عدم داشتن ابزار مخصوص های لازم نسبت به تنظیم های همه جانبه آن غفلت ورزیده و این خود مزید بر علت می شود علاوه بر این باعث خرابی های زودرس نیز خواهد بود .
سیستم تزریق سوخت الکترونیکی EFI چیست ؟
اتومبیل ها یکی از دو سیستم کاربراتوری یا انژکتوری را برای تحویل مخلوط سوخت و هوا با نسبت صحیح به سیلندرها در تمام دامنه های سرعت دورانی موتور مورد استفاده قرار می دهند . هر یک از این دو سیستم حجم هوای مکش را اندازه گیری می کند . حجم هوای مکش بر اساس زاویه دریچه گاز و سرعت موتور تغییر می کند و هر دو سیستم نسبت سوخت و هوای صحیح را برای تمام سیلندرها بر اساس حجم هوای مکش تامین می کنند .
به دلیل اینکه ساخت کاربراتور نسبتا ساده است ونیازی به قطعات با تکنولوژی بالا ندارد در سطح وسیعی از موتورهای بنزینی مورد استفاده قرار گرفته است . در پاسخ به نیاز های فعلی برای کاهش آلودگی دود خروجی از اگزوز ‏، مصرف سوخت اقتصادی ، سوخت رسانی بهینه و سایر موارد دیگر ، کاربراتورهای امروزی باید به وسیله جبران سازهای مختلف مجهز گردند که باعث به وجود آمدن کاربراتور با سیستم پیچیده تر می گردد . برای اطمینان از نسبت سوخت و هوای صحیح در موتور سیستم EFI بر اساس شرایط رانندگی مختلف به جای کاربراتور مورد استفاده قرار گرفت .
سیستم کنترل EFI در دو نوع آنالوگ و دیجیتال برای سوخت رسانی به کار می رود . در سیستم کنترل از نوع آنالوگ حجم سوخت تزریق شده بر اساس زمان مورد نیاز برای شارژ و دشارژ کردن خازن کنترل می شود و لیکن در سیستم کامپیوتری حجم سوخت تزریق شده بر اساس داده های ذخیره شده در حافظه مشخص می گردد علاوه بر کنترل زمان مقدار سوخت تزریق شده آوانس جرقه کنترل سرعت هرزگرد موتور کارکرد نادرست موتور و سایر موارد نیز می تواند بوسیله ی سیستم کامپیوتری کنترل گردد .
تفاوت عمده سیستم های انژکتوری در موتورهای بنزینی و گازوئیلی :
در سیستم های انژکتوری موتورهای گازوئیل سوز از سیستم جرقه زنی و شمع خبری نیست و در حقیقت احتراق درون محفظه ی سیلندر به روش احتراق خود به خودی یا Self Ignition انجام می شود بدین صورت که ابتدا هوا در مرحله تنفس وارد محفظه ی سیلندر شده و در مرحله تراکم تا میزان حتی 1 به 25 متراکم می شود در این حالت دمای هوا تا حدود 700 درجه سانتی گراد افزایش می یابد . سپس در بالاترین نقطه و در زمان مناسب گازوئیل توسط انژکتورها به درون سیلندر پاشش می شود که در حضور هوای داغ باعث انفجار می گردد و منجر به حرکت در آوردن پیستون و در نهایت حرکت موتور می شود .
اما در موتورهای بنزین سوز در مرحله تنفس مخلوط سوخت و هوا وارد سیلندر می شود و همچنان انفجار سوخت در محفظه ی احتراق به کمک جرقه حاصل از فرمان رسیده به شمع ها صورت می گیرد و این نسبت تراکم تا حداکثر حدود 1 به 11 امکان پذیر می باشد و در صورت انفجار بی موقع سوخت درون سیلندر پدیده Knocking یا Detonation روی داده و باعث وارد آمدن آسیب جدی به موتور خودرو می شود . که این امر توسط ECU کنترل می گردد .
وظیفه ای را که کاربراتور در سیستم سوخت رسانی کاربراتوری به عهده دارد در سیستم های انژکتوری به عهده 2 سیستم سوخت رسانی و سیستم هوارسانی گذاشته شده است که بوسیله واحد کنترل الکترونیکی Electronic Control Unit هدایت می شوند .
سیستم سوخت رسانی شامل : باک بنزین –Fuel Tank پمپ بنزین Fuel Pump – لوله ای انتقال سوخت Fuel Pipe – فیلتر بنزین Fuel Filter – رگولاتور فشار Pressure Regulator – ریل توزیع کننده سوخت Delivery Pipe Fuel Rail - انژکتورهای مستقر بروی ریل سوخت Injectors و تعدیل کننده جریان ( دامپر ) Damper می باشد .
سیستم هوارسانی نیز شامل : فیلتر هوا Air Filter – اندازه گیر جریان هوا Air Flow Meter – دریچه هوا ‏Throttle Body – سیلندر Cylan. – منیفولد هوا I.Manifold – مخزن آرامش Surge Tank می باشد .
در حقیقت سیستم سوخت رسانی وظیفه ای تهیه سوخت مورد نیاز در زمان مشخص و مقدار مناسب برای محفظه احتراق ( سیلندر ) و سیستم هوارسانی نیز وظیفه ای تهیه هوای مورد نیاز در زمان مشخص و مقدار و دمای مناسب برای محفظه احتراق ( سیلندر ) را به عهده دارند که به کمک سنسور های مختلف موجود در مسیر شرایط لحظه به لحظه کارکرد موتور خودرو را اندازه گیری کرده و پس از انتقال به ECU فرمان مناسب را گرفته و به کمک فرمانبر های مختلف بهینه ترین سوخت را برای کارکرد موتور تدارک می بینند . فرمان زمان جرقه زنی شمع ها نیز توسط ECU صادر می شود .
اگر سیستم سوخت رسانی را به بدن انسان تشبیه کنیم ECU یه عنوان مغز سیستم ، Sensorsسنسورها به عنوان حواس انسان ( بینایی و . . . ) و Actuators یا عملگرها مانند دست و پای انسان عمل می کنند .
بعضی از سنسورهای اصلی سیستم های EFI عبارتند از :
سنسور اندازه گیری دبی هوا AFM ( میزان دبی هوا از نظر جرمی و میزان دبی هوا از نظر حجمی ) - سنسور اندازه گیری میزان خلاء ورودی MAP - سنسور اندازه گیری میزان دمای هوا ATS - سنسور اندازه گیری دمای آب موتور CTS - سنسور اندازه گیری دور موتور RPM یا Crankshaft Sen. – سنسور موقعیت دریچه گاز TPS - سنسور l - سنسور اندازه گیری دمای سوخت FTS – سنسور اندازه گیری فشار سوخت FPS – سنسور کنترل وضعیت احتراق درون سیلندرها Knock Sen. – سنسور وضعیت سیلندرها Camshaft Sen. - سنسور اندازه گیری CO و HC CO-Potentiometer Sen.
عملگرها Actuators عمده سیستم نیز شامل شیر موتوری Stepper Motor – انژکتورها Injectors - گرمکن هوا PTC - شمع ها و . . . می باشند .
سیستم های انژکتوری در طول زمان تغییرات متنوعی کرده اند که در ابتدای دهه 1970 میلادی ابداع شده از سیستم های مکانیکی انژکتوری آغاز و سپس سیستم های الکترونیکی طراحی شدند . نیز از سیستم های تک انژکتوری شروع شده و هم اینک از سیستم های پاشش سوخت مستقیم استفاده می شود .
انواع سیستم های سوخت رسانی انژکتوری به ترتیب ابداع :
1 . K - JETRONIC ابزار الکترونیکی وارد کار شد .
2 . KE - JETRONIC واحد کنترل الکترونیکی اضافه شد .
3 . L - JETRONIC
4 . LH - JETRONIC
5 . MONO JETRONIC - SPFI
6 . MULTI JETORONIC - MPFI
7 . GDI
در اینجا سه مورد آخر که معمولترین سیستم های سوخت رسانی انژکتوری را شامل می شوند معرفی می کنیم سیستم های پاشش سوخت تکی یا Single Point Fuel Injection :
در این سیستم ها از یک انژکتور برای تغذیه چهار سیلندر استفاده می شود که این انژکتور سوخت مورد نیاز را در ابتدای منیفولد سوخت می پاشد .از نظر انتقال سوخت نظیر سیستم های کاربراتوری می باشد اما به کمک واحد کنترل الکترونیکی شرایط مناسب تری و مطلوب تری را برای محفظه ی احتراق فراهم میکند .
سیستم های پاشش سوخت چند گانه یا Multi Point Fuel Injection :
که به تعداد سیلندر های خودرو از انژکتور استفاده می شود که این انژکتورها برروی ریل سوخت نصب شده و سوخت مورد نیاز را مستقیم در پشت سوپاپ های سوخت تزریق می کنند .نسبت به سیستم هایSPFI میزان تغییرات سوخت در آنها پس از پاشش تا زمان احتراق بسیار کمتر است در نتیجه سوخت با شرایط بهتری وارد سیلندر می شود و معمولترین نوع این سیستم ها در حال حاضر به شمار می روند .
سیستم های پاشش مستقیم سوخت یا Gasoline Direct Injection :
در این روش برای اینکه حداقل تغییر در شرایط سوخت ورودی به سیلندر روی دهد انژکتورها سوخت مورد نیاز برای احتراق را مستقیم درون محفظه سیلندر تزریق می کنند . که به جز تعدادی خودرو ساز هم اکنون آنچنان مورد استفاده عمومی قرار نگرفته است .
سیستم مورد استفاده در خودروهای داخلی عمدتا از نوعMPFI می باشد که شامل منیفولد ؛ ریل سوخت و انژکتورها و رگولاتور فشار نصب شده بروی آن ؛ دریچه هوا و قطعات نصب شده بروی آن ؛ سیستم الکتریکی تعیین زمان احتراق و غیره . . . و واحد کنترل الکترونیکی ECU ‌ می باشد .که از این میان تنها انژکتورها ؛ رگولاتور فشار ؛ تعدادی از قطعات دریچه هوا ، ECU ، سنسورها و قطعات بسیار حساس به دلیل استفاده از تکنولوژی های ویژه از اقلام وارداتی بوده و بصورت انحصاری تنها توسط چند شرکت در جهان طراحی و تولید می شوند و تقریبا بقیه قطعات در داخل کشور ساخته می شوند .
آشنایی با سیستم های CLOSE LOOP و OPEN LOOP :
اصولا در هر سیستمی تعدادی ورودی و خروجی وجود دارد . موتور خودرو نیز سیستمی است که بنزین و هوا و . . . ورودی های آن و دود اگزوز و . . . خروجی آن می باشد . اگر با این دید به یک خودرو کاربراتوری نگاه کنیم موتور خودرو دارای یک سیستم باز است یعنی یک سری ورودی به خودرو داده شده و سیستم نیز بدون هیچ گونه بازنگری از طرف ما یک خروجی ارایه می دهد . این سیستم ها را مدار – باز یا OPEN LOOP می گویند .
اما در بعضی از خودرو های جدید از خروجی موتور خودرو ( دود اگزوز ) نمونه ( فید بک منفی ) گرفته شده و با کار موتور مقایسه می شود . اگر موتور در استفاده از ورودی های اطلاعاتی خود که همان سنسورها هستند دچار خطایی شده باشد ( خواه از طرف ECU خواه از طرف سنسورها و خواه خطای ناشی از عملکرد نادرست فرمانبر ها به هر دلیل باشد ) سعی می کند تا با تصحیح عملکرد خود بهترین بازده را در خروجی خود به دست دهد . به این سیستم ها مدار – بسته یا CLOSE LOOP می گویند .فایده عمده سیستم های مدار – بسته در این است که علاوه بر تنظیمی که ECU به صورت دائم بر کارکرد موتور خودرو دارد در هر لحظه این تنظیم نیز تحت نظارت دوباره بوده و اگر خطای کوچکی نیز اتفاق بیفتد بلافاصله تصحیح می شود .
در موتورهایی که از بنزین سرب دار استفاده می شود سیستم سوخت رسانی از نوع مدار باز یا OPEN LOOP استفاده می شود و در موتورهایی که از بنزین بدون سرب استفاده می شود عموما سیستم سوخت رسانی از نوع مدار بسته یا CLOSE LOOP می باشد .
مزایای استفاده از سیستم های انژکتوری نسبت به سیستم های کاربراتوری :
1 . افزایش راندمان حجمی و حرارتی موتور بدلیل یکنواختی و ترکیب صحیح نسبت هوا و سوخت در حالتهای مختلف کاری موتور
2 . افزایش راندمان حجمی باعث افزایش گشتاور و توان خروجی موتور تا 15 درصد می شود .
3 . نسبت هوا ی ورودی به هر سیلندر بدلیل استفاده تمام سیلندرها از یک حجم ثابت تقریبا برابر است .
4 . بدلیل استفاده از سیتم های اندازه گیری دقیق الکترونیکی برای اندازه گیری دبی هوای ورودی سوخت متناسب با آن تامین شده و در نتیجه مصرف سوخت کاهش می یابد .
5 . در این سیستم ها به علت حذف کاربراتور و پیاله بنزین بخارات حاصل از تیخیر سوخت در پیاله از بین می رود .
6 . کنترل موتور در شرایط مختلف کاری کارکرد موتور مناسب تر و بهتر شده و موتور در هوای سرد سریعتر روشن شده و نیازی بوجود ساسات نمی باشد .
7 . بدلیل یکنواختی ترکیب سوخت و هوا احتراق مناسب تر صورت گرفته و بدلیل افزایش راندمان احتراق موتور نرم تر و بی صدا ترکار می کند .
8 . بدلیل امتزاج مناسب سوخت و هوا راندمان احتراق افزایش یافته و در نتیجه می توان ضریب تراکم حجمی موتور را افزایش داد .
9 . در سیستم های انژکتوری بدلیل اینکه نیازی به گرم کردن منیفولد ورودی نمی باشد در نتیجه دانسیته هوای ورودی بیشتر شده و راندمان حجمی را افزایش می دهد و در نهایتا قدرت خروجی موتور افزایش می یابد .
10 . با افزایش راندمان احتراق و کنترل پدیده Knock یا Detonation باعث افزایش عمر موتور خودرو می شود .
11 . مهمترین علت ساخت سیستمهای انژکتوری و مزیت اصلی آن نسبت به موتورهای کاربراتوری کاهش آلودگی ناشی از موتور خودرو می باشد تا قابلیت پوشش دادن استانداردهای عدم آلایندگی را داشته باشند .
معایب سیستم های سوخت رسانی انژکتوری نسبت به کاربراتوری :
1 . گران بودن موتور بدلیل گران بودن قطعات سیستم های انژکتوری
2 . احتیاج بیشتر به تعمیر و نگهداری و خدمات پس از فروش
3 . نیاز به صافی بنزین دقیق تر و بنزین با کیفیت بالاتر
مطابق آنچه در این نوشتار به صورت ساده و مختصر بیان شد می توان گفت. که هر چه سیستم سوخت رسانی دقیق تر میزان ورودی ها و خروجی های خود را اندازه گیری نماید و در نتیجه بهتر توانایی کارکرد و تطبیق پذیری با شرایط گوناگون را داشته باشد منجر به بهبود عملکرد و کارایی خودرو می شود . که این موارد در سیستم های تزریق سوخت الکترونیکی بیشتر و بهتر مشهود می باشد .و در دیگراینکه رسیدن به هوای پاک و کاهش آلودگی که امروزه از دغدغه های عمده ی پیش رو در کلان شهر ها است و نیز کاهش مصرف سوخت و در حقیقت استفاده بهینه از منابع محدود انرژی بدون استفاده از این سیستم های جدید سوخت رسانی ( EFI ) تقریبا غیر ممکن است .

فهرست منابع و ماخذ برای مطالعه بیشتر :
1 . اصول کارکرد موتورهای بنزینی انژکتوری / سیدهادی ریاضی / طراح / 1381 .
2 . سوخت رسانی موتورهای دیزل و بنزینی انژکتوری / مجتبی ضیایی / تک خودرو / 1368 .
3 . آشنایی و عیب یابی برق پژو 405 و سیستم انژکتوری پرشیا / سیامک گرشاسبی / کمال هنر / 1382 .
4 . آشنایی و عیب یابی سیستمهای انژکتوری مولتی پلکس و الکترونک پژو 206 ایران / سیامک گرشاسبی / کمال هنر / 1382 .
5 . فرهنگ لغات فنی اتومبیل / رضا هاشمی / روشن / 1373 .
6 . جزوات منتشره توسط شرکت های ساپکو و مگا موتور ( شرکت های طراحی مهندسبی و تامین قطعات ایران خودرو و سایپا ) .
7 . جزوات آموزشی تهیه شده در شرکت کاربراتور ایران
8 . Tunning S.U. Carburetters / G.R. Wade / SPEEDSPORT / 1981 .